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 «.;\ s neﬁlectcd. The following congideraéibné-thg;@fbﬂé»
fi;;%,.» apply the more exactly thevsmaller ﬁgc’body end ;-
" | qﬁidgiy‘it‘movégo_‘ In the c(bé of P'OJOE ed, éndﬂ

primarily, of unlfcrm processcs, the zrijuments holgd

k]

only~in the close neighbnurhrod ~f the body, A

e The 1nvest1ﬁat10ns deal fl.\; with tie-boundier 0
o v e T - Ei

; - conditions with resard to the iiscontinviiies whieh . spnent ﬁ\?
- . - ? - N . * . R . ‘

at the iree surface, = Tne verious move.cnis of ihs ligoid

CEn

:ma" be d1v4 st Luto.- bwo clzdres, whluh way be aseTully

Atermad impeact and "sliding * movements *

Coltei weves 0f these’discontinutties;“ S

e -~

xFoot hote.’r"“lldlnﬁ movemert ébe the

l._ b

A‘,‘";’;‘ ‘. ~ E ‘ . Ar AR ) ~ & ) i AI f&'if‘()i{"‘.}' !l"
R REEREE S Rowcs™ .‘-U!m:ev Fn!d \r’ SR




In the case of impacts (Fid. 1, &, 25 top) the
free surface, during the period of time under consideration,
congists of the same liouid particiesa If 2 contour
exists between the free surface and the body, this will be
formed along its whole lepgth of "peaks™ (edges of liguid
weddes) fig. 7. These peaks freqguently deﬁenerate to
'splashes which may be interpreted as the expression of

the momentun "destroyed”" by the impsact. Inpact processes

are determined uniquely by the initial motiorn of the

liouid and the course of the nmovement of the body,

In "slidin<" processes (figs. 1%, 26 ) there
are regions along the contour betwsen the surfaces of the
body and of the liguid (e.%. sliding edges), zloni which
new liéuid particles come to the surface. For the

determinztion of sliding processes, -in addition io the

data relative to the initial wmovement of the liouid end
yéf the motion 6f the body, certain zssumpiions are
necessary with regard to the position of the point of
diversion of ‘the fiow from the surface of the body. If,
wvithin the redion of the fiow thiere is a projecting edde;
and if infinitely'ﬁréat nesative prcssvre?is 10 be

prevented at this position, the disersion musi -tarze placse

2lond this edde X

— i i i T s S B R T W A e D s B A She 0% S (0 b e S e

X Foot Note. .Ine process illssirated in £ijg:23 (centre)

owing to the position of diversion C. (€liding edge")
is also a slids. Its dgenzral treatmeﬁt as an:impacT
ig &an approximaiion! whichk 4ives accurate results ‘only

in the limiting case of infinitely small splash thickness,
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The processes of slidind may be compared With
the motion of fluid past a body from which a sheet of
vorticity breaks away. The determination of the ,
tansential velocity of the fresh liguid particles ar}iving
at the surface is analbgcus to the determination of the
strength of vorticity of the newly-formed vortéx filémeﬁts.
A detailed analysis will bé nede of the motion of bodies
with infinitely flat botiom qn'the surface of thé liquiﬁ
(£ig. 12).. In the éarlier me£h§d of treatment of the
problem by means of pressure points X X account was taken
of the acceleration due to sfravity and an expianation
obtained of méﬁm forz. Owiang to neslect of the
discoﬁtinuiiy (splashf at the forward adge‘howeQQ:; the
method rendered it possible only in special cﬁses,.ts
derive an interpretztion of the fiow processes near the
bbdy and to obtain a correct calculation of the resistance.
‘In the present paper it is shown that, in the limiting
case under consideration, the uniform or variable sliding
or impact motionr.- of a flat bottom on the free surface are
determined by the "equivalent aerofoil motions". Ezcept
in the reﬁion of the splask, the szme pressure =xists
at(fbe pressure surface of the rottom as at the pressure

side of the equivalent ‘aerofecil, instead of the suction

XX : R
Lamb - Hydrodynamies. pp. 44¢ et seqg, (esp.fis. p.1454):

and pp. 437 et seo.)



which occurs in the case of the aerofoil, a splasb'is
thrown off a£ the e@ge of the sressure surface, the
eneriy of which correspohds to the increase ia drag ,
resulting from the removal of the suction force,

tihereas in the pase'df the aerofoil the drad {induced
drag): depends only on the 1ift, in the case of the bottom
the additionsl resistance due to the loss of the suction
varies even with the sgne buoyanqy for different shapes
of bottom,: A'feﬁ examples will show how the bogndary
condition for the contour of the pressure surface {(rise
of the iiquid particles eéuai 10 the heisht of the
bottom, cf. pare. 10,) may be fulfilled.

. in gddition, ecuations are found for two dimen—
sional liguid motion with free surface when a centre of

similitude is present. Fxawples of suct motion zre :
Thé two;dimsnsional problen of the penetration of a
wedgfe at constant speed V, intc a 1i§ﬁid with initially
a2 plane or wedge~shapéd surface (fi7s, 2, 26, 22) and the
axially symmetrical problem cf the penetration of a cone.
at constant spesd iﬁto‘a liguid with initially a plane
‘pf‘conical surface, .

#inally the case, which, as faf.as the writer
is aware, hés not hitherto been dealt with, of the uniforn
glide of a flat platé is caiculated (two-dimensional

protlem, finite angle of incidence).,’ -
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Syubols., Scalar, in Latin or Greek letters; vectors

in German letiers ¢

t = time.
0 = velocity potential. ‘
1) = grad 9, v = velocity of the liquid,
/Dt = Stokes' operator (for the subsiantial
variation).
fn = Unit vector perpendicular to ike surfece.
Vn"i wa-uy)%A normal ,} , Components of the velocity
vy }=: tangential }A of the liquid at.theisurface,
V. = translational velocity of a rigid body.
Vﬂ = normal velocity of the contour of a bbdy
.(geﬁerally vafyiné'its fd:m);
@, + =  specific density of the liéuid;‘_

?ur{her,lfor the two—diminsional problem of fluid notions

= angle of inclination of ‘the surface(in
‘deneral with reference to the initial
. plane surface),
s . .= Lensth of arc of . the surface,
& = Unit vector in the direction of the
tangent to the surface.
¥ = flow function.
Z = x+ 31y = comwplex co~ordinate.
w = p+ivy = complex flow function.
dw v v .
az X i Vy complex velocity.



I, FUNDAYBETAL PRINCIPLEE.

-

1. Egug@ggx_ggggigigg& The interpretion of the
geometricai boundary condition in the sense employed
below is, that at tﬂe'surface of the liqﬁid (at the
body and at the free\surface) the normal velocity vy
cf the liquid is equal to the translational velocity of
the surfage'perpendicular to iiself *;, At the ifvee

surface this is frequently replaced in the two-dimensional

problem by its differential form ¥ ¥ (ef. fig, 3)«

9
gcp? = 4 -..}Q < 1)°
]

but the original condition itself must then be satisfied

at one point,

% Foot Note.,  cf. Lamb. loc. cit,

¥ X yse is made of 9/0s, because here and in all
-subsequent daia on the run of the velocity at ‘the
.surface, the velocity of the liquid particles of the

surface,itself only will be considered.
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A% the free gsurface we have, in addition, the

dynamic boundary. condition. Since the free surface is a
surfsce of constani pressure, the pressure gradient and

, D . .
consequently the._ saccelgration nlg is perpendicular

Dt
to the free surfsace. Hence for the two~-dimensional
wrabhl S o
iy oM = 0 (2).
Dt
or with
e 1
Dt %
%, - D )
P.ZI‘L = P..I'.E) = 70?.. o= Vn ...ﬁ (3)°

Dt Lt Dt Dt

CCombAning the dynamic boundery condition

equation (3) with the geometrical (1) we Jet (=

Dv, 31
wu-tl = Vn“n fadad (4)9

Dt 9s

In the two-dimensioral problem also, D #y / Dt,
owing to the geomeirical boundary condition, is‘détermined

by 2 at the free surface.

L%
Dt

'a’*?mz[nn grad}l,‘ﬁnwj (5).
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Yhe dynamic bourndary condition

- B | . .
glﬁn -7 = 0 1is expressed in the form,
' Dt J ' :
D7)} D ~ ) . - Dﬂ, ‘)1‘
~b e s aplug W] =ty W) el b g e (e).
D% Dy *~ - Dt D%
From equations {4) or (5) and (6) we obtain:
Theorem I: . 1f, for ven mewent of time ing

velocity &% todether with its direc tional derivative

of the free surface are known, then the variation in

time of the tangential velocity %/ for these particiss

-

s_2lso ka o¥ifl. 7.

2, Boundary condition with discontinuous curvature,

e e e

%relig}nary consideration: Tor a two;dimensional
problem of fluid motion take %he following as hypcthesis
(fig.4): 'On & portion g, of the free surface, let tihe
form of the surface méve parallel to itsell at a veiocity 5?3
invariable in time,' A1l liguid particles situated =% the

—Beéimninﬁ R of 5. should, at this position; have the sane
velocity #7 p .

wer . Owing to the deoretrical boundary condition,
w R E o e

“.along s; the "relative" veloclty of the liguid particles
is ey U = AT Ml , where U' is the amount of the -
relative velocity. By puttins %) from this into thd

1 i

dynamic boundary eguation {£) we get D/ Dt =" 0,

that is, the value Jois constant for svery liquid
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particle in its movement along 8. . Since at point B,
T - Fh

1
liguid par-ticles, it follows from the hypothesis that

g = is of tne same value for all the

U is constant along g_.

‘Boundery transition.

This.consideration will e applied to agn-

—

(infinitely) small region ®4 —» O, along which the

inclination of the free surface in general differs by a

)J.

'finite andle (fig.b). At the surface adjacent to I

t

outside 84, let the curvature of the surface and the
velocity fiéld vary cdntinuously and corntinuously in
t;ime° Th¢ displacement of this redion sS3 with 2

continuously variable velocity 7?)7 , 1s givvn by the
fgfegoing consideration: 'if‘fhé form of the surface 3s
varies continuously on a (finite) path W X, then along
83 at any momeht, J differs from a constant value only

AT : e By '
by & J === ' boing suall as ?f Or briefly?

x Foo g Héie; i.e. the surface increased in the scale
1/ 8, should retain its charactér (at least in part) éf
a smooth curve.,. It shéuld also be possible to select
on g, an infinite sequence of points (interval 4) sp'thaﬂ

on the path % every & experiences a rotation, con-

“tinvously variable in time of a (generally): finite angle.

1]
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Yheoren 2: For every swall refion 84 —2 0 of the fre

e St o e i P8 B e, . S . TS S0 i St S e i e (e P B Mo S i s O gy A Sl e B T S S

4
surface wiih conitinuous- or dWchontlnuous curvuture the

velocity *2, , witk U = coast, W) - Z%-th U 5

i.e., tithe boundary condltlon at the fr=e surfuce, for the

e v o s _,.-...._ R et
e ——— ~

relative velocity field %/ —7/Js _ is the samg_as_with a

. 7
uniform flow.

A e e e ot s i i e e

iith correspondins conditions of continuity, this

.

consideration may be formulated also for the three-~dimen-

‘sional case, It is obtained with the not '.ion established
vy - ‘ ~ o2
for the twc-dimensional problem ) = ﬁ:q %—;ﬁ i) -+ @ |
2 ' . A .
where 9  denotes a constunt veloecity alond 3, in ihe
.-‘ > ; ~ i
direction of the edge.
3. Flow in_the reﬁﬁon_of dlscc'i rugggwqggzﬁggggA
Ansles: Let the 2iscontiauwiry s, (fidg.4) and

the redgion of flﬁi& 3; be enveloped oy tuc infiniiuly

small cir\c‘le.r;c The resion of flaid 3, lies botween ths
,diréle ;Rand the laerger (e.f. concsnt:ic??but'sﬁi}l
iéfinitely small) circle r,. . lu accordasce #ith thsores

W) r is constant arong gg, and 7(;0. along (4, . In

accordance with ihe sheorem ¥ of the theory of fuaciions:

s e RO e e e . v e i S e L S A S S . o A 4658 e 00 e e e SRS i 4 e e BT R i MR RS e D RN g AR S S m n

~

Foot Note. durwitz - Zourant. Punktionenthegrie

Springer 1929, p. 3752
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"If; in a redioa (§,) itke soundary.value of an analytical
funciion at an arc of & spooih curve 1is Adfo,ztzgldsﬂ:;C&LlJ
zero”, the relation #» - 33z = O must hold in the

region G,, PHeance it follows that »% g = 3"

“ “"B which,
in accordance with theorew 2 1is consisteant only with U = )
nence with &. = 25,, Tonsaguently . I o= +7, along

the whole eontour of G,, hence also at G« itself.

Theorem 3: In- a re~entrant or progect¢n4 uls—conulnu1+i

——

e o v . ————

of the free surface, situated zt a distance of at least

r, from other GlSmCOntlﬁhltleu or from _the surface of the

- 4 e e e ——

: ™
body, the velo i'gwgf the fluid is egual to_the velo ; ¥
of the dis~60ntinuitv&
1]
1)
Peak oi»}_; Splezgh: Using the same thecrem of

the ﬂheory of functions, it may be shown for the case
(fig. 7), - when along s4 / 2‘ the contour of the body aod -
of the free surface-is con@indousiy curved and when the
normali velocity V, at the body is contiruous and
continucusly variable in'timei.fhat:

: If the free s rrface forms a2 peak with the

e T e e B (s s s e o e o e e s s e e

ITheoresm 4

surface of the body,. tre Vﬁlocl'" of the fluid in the pesk

N IR e Lt e W s i 2 73 s e S e B8 e TR F e Ao e e __...,_..m_..._......_......

is_equal to_the veloeity ¢f_the peak.

Koot _of ,the Eplash, Jonsider the case of a

o e o W TR —

e i3 o e 2o

c.f. Lamb, loc.cit. pod

(9]



dis~continuity in the neiglb-vrtood of the body. Usinag
- s - ;W £3 £
the method of Schwarz -~ Christoffel ¥ %€ find for the

i
flow (fig. 8).

dw T+ 1 and d 1n éz i 31
—_— = ———— d a i -— = - e e
dt T dw (x + 1) ¥«

A

where t 'is the couwplex auxiliary plane. = Ii =~ i s

the volocity at the free surface and & the thickness of the

r

splash we get =

v o= - Y E (1+4+41In+v + = ) (7)0.'
n
gz = ° <in -1 4 ive 4+ v 4 é), {3).
T

Tue free surfzce is given by

» 2! /«r N -'{2‘ ’V \\ ~
T TSR 17 - ln!~m {3 - 1 f (3
B 6 16 'l\ 6 ’/ % 16 “O ‘.l :

£ the bottoo (neiastive real 1) %he sressurs of’

the fluid (fig.2) is

e s o e A0 L .

Lanb. loc eit. p. 1)0.

’
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The maximum pressvre p max = 3§ , U? occurs
at the position T = -1, hence x = J. The pressure
P, on the pcptigg of the bottom between x agud » = + «
% e
isP, = T po b g2/ <1  For T o>~ =,
it
: . . . p S .
.according to equation (B8) = — - 3 kence
T 4
e
for X —y = = B Py-=4p U227~/ ~-x (11).
n

-

If 2 constant velocity vy is superposed on the
fiow (f{ig. 8), a flow :on-stationary in the strict 'senmse
cf the word, is produced wiihout zny change taking place
in'the pressure distribution, If, in particular =2

velocity v, = U in the direction of the bottom, is

superposed (fig, 9), and hence according to equation %,

W, = Vv, =2 (1 +1lnx +71) +32 (12),

the tangential velocitiy at tho free surface at a sufficient
distance from the splash will be zero, For z and v of
such value that 1n < is neslisible in relation to vz

ceguation (12), taking intc account eguation (8) is

transformed into the form

e

/6 / .
W, — 4 vy // e : (13)@
i



& flow similar t. ..at described here will ocecur

in a smzll redion in every case of impact or glide.

Gliding edde, Tet us apply theorem 2 to the

free surface behind a 4lidin? edre. dssuming continuous
crrvature of the surface of the body at this point, the
relative flow in a region of (infiritely): small z

(£32:10) is given by:

410 12 - iiﬁ. (14) .

dw i/w

w ‘/ET
hences: T o 2fetiyin 4 ﬂ; (1)
A' . o ; ‘ AU' . .

B is a constant determining the scale, U is the relative

tangential velocity.

Considér the case of an impact, in which at the
time t = 0, the form of the free surface and Ythe surface
of the body and the velocity field cf the fluid are Aiven.
Let the velocity of the moving boundary of the surface of
the'body YV,): be given for t“z 0. 1f in the course of
time no new fluid particles reach the §urfaceb(impact),
the course of the flow in time is uniguely aetermined by
© these data, sincer :

Fith given velécity field (hence also-vnY'at

the time t, the form of the surface at the time t 1 di
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guely deterwinable, At ¢ surface of the body
) ) o ¥

according to hypothesis V¥, is also given ag the {ime

v o+ do. Lt the fres surface, at the time:t + dt
{(theorem 1) %% and hence with simply -~ connected
surfsce, ¢ also (excspt for an insiénificant constant)
are uniguely determinable. By mweans of‘these data V,
and ¢, the velojfﬁw figld of the fluid at the time

+ dt * and hence also v, at the free surface may be
uniguely determined and so on, for all subsequen? dt,

Unlr the discontinuities (besides sliding edges)

definea earlier however uay appear, This proof may be

fav]

pplied for the actual.calculation of general cases
(even when higkhly involved) of non-stationary impéa.c_ts°

In the case of sliding, as shown in fiﬁ. 10,
it is immaterial as far as the flow in'the neighbourhood
of the pointvof diversion is concerned, whether the
iatter is 2 sliding edge or whethe? the bottom aft of
the point of diversion extends in 'a continuous curve,’
Iz in.tAe latte; case the variation in time of the

position of the point of diversion is given, the two

7

e ——— o —— A T T e VBt D PR o A A W o o B4 e S 4 O ] & N g, B s S S T S .0 S

% Lawmb loc. ci%. r.4s.



34
e

problems are eguivalent. X

1

The writer considers that beyond doubt a slide
nay be uniquely determined if particulars of the surface
and the velocity field of the fluid et the time t = J,

the run qf the»cqntour of the body and the position
of the point of diversion for % 20 are 4iven. - In the
proof used for impacts Lowever the following difficuliy is
encountereap

Luring the time dt, a new portion of the free

surface lLas formed, the tansential velocity of which is not

—— T i morim 5 et Y e S

e " .

X Pogt Note, The selection of the point of diversion
in the case of a continucusly curved bottom is subject

to the limiting condition, that the flow is diverted

rise of_pressure in the direction of the velocity.
Ubviously the point of diversion should be so selected
that this rise in pressure is avoided. This maﬁ be’
'still just cbiained éy the rossible condition of con-
“tiruous curvature ai this position as z liniting case.
kith the glide of fiying bozts {slishtly curved botioxm
high Reypolds numbe;)k the fluid ic¢ not diverted, as may
be inferred from tests, in some cases till far after the

pressure ninimum,
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doterninable ac”w:ding‘to Theorem 1. It now appears

that this velocity %7 for the infinitely sﬁal; portion
of the surface is determined by the flow {(fig.10):: the
quantities 4 and U in equation 15 would have to be so
deternined for the time t 4 dt, that this vel&city field
merges smoothly into the adjacent geﬁion.; The writer has

not gone into this problen,

Risigg off tﬁe surface. The writer has been

unable to obtain elucidation on what takes place when a
body rises off the surface of the liquid (fig.11), when
in a region § of a withdrawing body surface, discontinui-
ties of 2 kind other tharn those pitherto described”appear.
"The gquestion of such flow phenomena wili not be diséussed
in the present paper.’

IT Infini*zly Flat Zollom.

"y i 5 i e e e s

5. Definitions ead ‘Refions.

The fluid completely filling half the space is
assume& to possess initially a flat surface. It is
assumed to be initially in a étate of rest. doticn is
'sét up in the fluid by the movenent of "the bottom ol a
body. on the surface (thfeé-dinensionﬂl problem). - We
shall consider the limiting case, when the inclination B
of the pressure surface relative to the initial .surface

of the fluid at every point is infinitely small,
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-The pressore su: e, in plan, 1is assumed as

5

“being ¢f finite extent in esvery direction. The norual

t

wweloeity Vy at the pressure surface, the order of magnitude

v

of which may bs arbitrarily fized, is assumed to be small
as B,- The time elapsed since the inception of the process,
during which the infinitely swmall .depth of immersion is
‘reached (small, as B);, is consequently finite.

The space filled by the [luid is.divided into
the following regions (fig. 12).

)
- principzal region  (primcipal flow)

splash root (root flow) X
- splaah.
I'he boundary region is common to the principal region and
fSplash root,
The contour of the pressure surface, variable
in time is formed (fig. 12).
-~ at the leading edge, i.e. at positions whers it
expunds (at velocity %7 4), by the splash foot.
~ at-.ositions where it coniracts, by the gliding

{
edde,s

the eguivalent acrofoil motien 1is regarded as
the nanustationaryvfétion'of an iﬁfinitely thin plate, .
which at every instant possesses the same fornm, contou:_and
Velocifies Vq- as the pressure surface, in fluid gxtending

in all directions, at rest at infinity. (£ig.12 ~ right).

——e G o P T s o o

X  For the present limiting®case, B—»0, it will be found

‘that the splash root is infinitely thin.



In both cases in {fig. 1Z, at ithe instani ugder

[

congideration, the same velocity V, is zssumed as being
: e

produéed by the.similar novemenit dfvsimilar plates.
Given simtlar %) ¢, the identity of the two

velocity fields in .the lower hazlf-space at this moment
cf time follows from the identityiand unigueness of tihe
two boundary»conditions.

V In the sense of this comparison, the terns
"vortex intensity® 2 [ Th #J¢ 1 and "circulation”
= 2 Ei % will be applied also in the cfse of the

flow in the half-space. [t may be readily proved that:

~

if W?t and its directionazl derivative at the surface is
continuous (this being taken as a hypoihesis) and if

¥, t Llike V,, is small, as g, then 4., at thg free

et IR

k4

surface is also continuous and small,as 8 1n general
vy becomes discontinuous (infinitely sreat) only toéards
the boun&ary of the pressure surface,

it is shown further (for the sake of simplicity,
for ihe two~dimensional problen) ﬁhat the tacit assumption
of infinitely smali'inclipétion of the free surface.is

correct, in continuous redions, according to equation (1

e

‘Do _ )7
= Falosg

# If at infinity the velocity 77 . is = O then

, . e (R . Y A e
et oLz opun = 2 fF Chie Az, A,
A
F o



and since g= 0, fo,. ¥+ = .me inclination o of the free

surface s suall, es V7, hence snall, as B, This holds
H

also for the three~dimensional problem.

7. Dypamic Relstion.

Jo

For the variation & vy of the tangential
velocity %7 4 durind an interval of time At, in the
continuous regions accordings io Equation (3) for the two-

dimensional problem, the relation :

' Al At).
b vy =.ft vy De‘dt = f vydg
Dt

holds, Consequently 4 vy is small, as v, & o, hence as

~

B2, so that in the determination of the velocity field

(fig.: 18) from the boundary’con&itions, it is negligibly

srall in relestion to the other velocities. Since for
the three - dimensional problem, .the same result is
obtained from eguation (6), the following theorem holds:

Theorem

im0,

851 in a continuous region of the free surface

the tangential velocity #)y is_invariable in time.,  Fluid

particles, which since t = O belong to the free suriace,

have tangential velocity zsro, _ If fluid particles approach

e S e D A T Sk S e ot . AN R Yl L e ey Bt L

. s o 2y . oo B e v

the free surface behind a sliding edde with _a_tandential

s o

velocity “#74 (small, as f), they retain this velocity

unchanged.,

This conforms exactly with the cond*tlon for_tne

- . N t « .
continuance of the surfacs of vorticity behind the equive~



fae)
-t
k]

lent zerofoil., ¥

Production of %7, .  According to theorem §

o ot o S o s S s sy P S i e Pl

oniy fluid particles freshly arriving at the surface can
ce A ' . : s
possess velocity 40 4s noted earlier, in deneral

infinitely dreat velocity v, would be contingent on

arbitrarily given 777 ; at the sliding edds, According

"to ecuation (14} however, v, must be fin

[

te along the
sliding edge. Conseyuently the newly~produced %/ &

for any moment of time is‘determined froz the condition
of continuity at the sliding edge. This, as a result of

.

the jdentities & - & already shown and theorem &, is
;

identical with the calculation of the surface of vorticity

behind the eguivalent aerofoil from the condition of !

continuity at the trailing edge. % X

4

X ¢.f, kaguner: "Uber die Entistehunsg des dynamischen
duftricbes von Tragfligelu™, . Zoa. W.¥. 1925, Ho, I
par. 2.

XXpoot Rote: c,f,:ﬁagnzr,jloc,jcit,j £ 1, 'This comparison

s

is unique, only when the determination of the vortex
intensity in thé aerofoil problenm from tﬁe condition of |
continuity at the edge is unique. This appears ungues—
tionable,” Should this however not be the case, e.g. in
special cases, the ambiguity would be expréssed in an
ambiguity in the integral equation formed on the basis

of this condition. The intesral equation,(e.f. 3): R

Z,éomom,j1925 appears ito be unigque.:
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A1 the _oading edfe %7 {in ceneral) becomes
disconiinuous., 4 counpiex co~ordinate % 1s placed’
throudh a point of the leading edfe, perpendicular'to

the latter,

In the case of the gouivaient serofqil the flow

function wg in the regica fnear the leading edge, and the

‘specific, suction force }’ gxertecd here, zre diven by

(C = comstani)., *

. N
~

wg = 0.0 - 3z i€)..

‘~'l— R 2 r7y-

and I = - p C* (17):.
i 4

. RS
As may be readily shown, p~ ois small, a

4

.

147}

In the sliding or impact process, according o

‘eguation (1), discontinuous curvature of the free surfacs

A

is dependent on discontinuous v,. CJince cutside ihe
discontinuity #74 = O at tho free surfzce, let us see

vhether the velocity field w, unccording

o
e

(£ig,9): obtains in the discontinious redion.
The diameter of the limited refion iz selscisd;

on the one hand infinitely swmell {as

Tie

231

) in relatior io *h

dimensions of the pressure surface, so that the [low in

the impact or sliding process identical with the aercofoil

flow is given by eguation (1€) Hut on the other, infinitely

o equaticn (12):

97

[P e o

X% o f, Grammel. .“lydrodynamicsche Gruandlagen des

Fluges®™.  Brusswick., DI. p. 2,



large {es 1/B) : relation to the thickness & of the

splash, so that in ¢ is nepligible in relation to vw.
: : ;v

(c.f. equation 13), - In this liwited redion ihsre is

smooth tramsition between it-s prinsival flow and ihe

roct flow, (w,==wg ), if =lons the whole leading edre

the thickness of the splash i:

Vo
H
P .
P | S0 G W< (13},
g =, .
Ty 2 oon 2
L0 Vg LLV
[ ¢c.f. ecuation (18) with {(16) and {(17)1.
o s . . T ne : ;
Since 4 is found to be sweil, as -~ hence, as 3%, ths

o

erder of madgnitude considered is sheown subs;cucptly ag beind
perrissible.

If, for the principal resion towards ihe lezding
edgr, calculation is made éf the form of the free curface
aecording to the flow function wg in this,réﬁlon, % is
seen that in the boundary red:on also she form of the
principal resicn nasses smoothly .nto ihat of ine :splash
root equation (&) when (18) is fulfilled. ¥ It is
seen further, that in the boundary re~ion the irélination

of the surfasc

r

~dis £till infinitely smail sud that “ere also

%/t is infinitely small coapared with vy, . so thav bere;

(¢

2s in the principal region, ine boundary condiitions zar
fulfilled.,. o~ x

3. Summany.

. Comparison is meade beiweeh the impact or sliding

process with the motion in the case of the eyuivalent

asrofoil. In the eguivalent aerofoil motion, for reasons

. NS A 4 e Sy A e o ot Lo o4 P12 i ke B § et e &

O

bty

® This conditicn may 2lso be empls
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yhe pressure is p = 0.  From the idantiity of this condition
and ihe

identity of the normal velocity V, at ths
pressure surface and the asrofoll and further, the
identical condition of continuity at.ihe sliding edde

and trailing edsge, it fcollows 3ihat in the principal region

(lower half-space) in both caces identical flows ex

igt
at ell times. . It is only in the infinitely, small rsgion

of discontinuity at the leading edge that the splash
zppeaz>s in élace of the suciicn force.

This velocity field coupoused of iwe localir
different regions, in the limitind case B~30 {provicad
that equation (135"éives 4 corntinuously variable in time
hence that the conditicns of continuity para., £, are
fulfilled);, fulfils the geometirical and the dynamical
‘boundary qqndition alonﬁ.tbe vhole cf tie free suriace
{principal region, boundafy region, Splash'root)~and;

fulfils the boundary condition v, = V, at the prensure

»

surfzce, The principal {lew and the rocot flow necrs
szeothly into each other, the velacity fieid in ile

‘whol®s refion is irrotational and source~iree.

The water thrown of; in the splash travel

P’

-~
?

ey . E

L

a2 veiocity invariable in tin
. Ie

Effect of Forces. The pressure on tne surlacs

of the bottom a2t every nosiiion in the ‘principal radion is
. ' o
exactly of tiie same order as uhe pressure on the underside

of the zercfoil, hence in this limiting case, halfl as



great as the difference in zreszsure between the upper and

The root region [ up to -—- —%« 1iu equation {33) ]
& '
is small, as B. Conscquently azccoriing to equation (11,

the force exerted in ths rsdicn of ihe splash root is small,

Ry

,.

as B & and, with regard to 1ift and resistance, may be
1

Theorem €. At 211 times the magnitude of the lifting force

e o e e s S e " o e o, S

of the sur;ace of the sotton (1on»st tionery u»dAmenslonal

B e A P gty AWy

problem) is half s dreat_as_ i

e Yo e B e ey W e s e s S

the equiveleni aerofeil, The pcsit;gg of_ gge forces "

pe- N

likewise is in_sdreemgnt in both cases.

By comparison with the resistance ?H?t of the

equivalent aerofoil the sucticn force is neslisgible, For

) s . e PR . ’ .
the resistance Jf/ of the sliding surface in the non~

stationary three-dimencional problem therefore, the relation

_—
D
i

f s

(g = 1 aw) (19).

holds,
The integral is extended over 2all elements du
‘ k)
(fig. 12) of the leading sdse,

[ e

The splash volume &v, dt newly—produced over the

unit width Au = 1 of the splash root in the time dt, has

1

a velocity 2v, and consequently a kingtic enersy 4 1 =

%vp.~6v,dt,‘(2 v,)®, . %ith equation (18) this becomes



a7 = 1, ,4d+%. . This means that the additionsal

INW A

+

work regquired on the paih v, ¢ t of~ihe leading egge owing

to the absence of the nalf of the suction force %

[
Z
compared with the egquivalent aerofoil, appears as *auilified®

kinetic energy in the splash water.

10.: Integral equation of the Impact dotion,

e S i ane

For the limiting case 8 —= 0 of an impact motion
let “he fluid be assumed as initizlly at rest with a flat

.

sur/ace, Mlso (fig.14). st the elevation n y of all,

g

points‘ ¥yp of the bctto@ surfasce for the whole period be
g‘ven, namely ny = 1 (t,:fb% and thence its normal
relocity Vy = Vp, (t, ¥yl yli is required to determine the
variation in time of the contuur of ﬁﬁe pressure surfacey
tbe radius vectors +« , of the qonﬁour (fig.12) will be

given by their value re (tg A). gy solution of the flow

problem shown in fig. 1Z in the known manner, the velocity

v, (W, €) for the free surface is now obtained. This

i

veloqity is expressed in the form vn£'5; Vn[t, }fb —

— r, (%, A)J% ,» to indicate that this velocity st position )

at the time t depends on the given velocities V, at this

time t for &ll 7y, so long as 7 lies.within the

momentary contour r,.{(t, A) of the pressure surface. The
,

elevation of the fluid particles then is n = [ v, d t,

.

The fluid particle continues %o rise towards the boitom

which it finally reaches at the time t;, when its elevation
} . i
has become as great as that of this bottom at this position



~ re

Wk of the contour -f the pressure surfzce £ at this
time t,, hence.

1

1o 7 - ' X e
nb [ty r,(1,,A)] = fovn &rx(tm,h)g Vo [t Hb-*vrx(t,V]j dt (20).
4]

This integral equation, which aust be fulfilled for every
t, along the whole contour (hence from x = 0 to 2 n ) is
used for the determination of ry (%, Ao

In the siliding moiien, according to hypothesis,
the path of the sliding edde in time is given. The
condition, equatipn (2)) automatically fulfilled at the
sliding edge has now to be evaluated for the leading
edgse, A complication which arises is that v, depends
further on - wvjt, which in turn must be determined from
the condition of continuity at the sliding edde, to be
formulated as an intedral equatibne‘ A closer analysis
is omitted here, |

The following examples give solutions for this
broblem in particularly simple cases. The deneral form

A
of the integral equatior will not be refraced.

Closer investigaticn shows that inter-ation can be

mzde over the root region without notice being taken

~ I

of the special form of the discdntinuity.(root flow) .



111, ' EXA4PLTS RELATING 10 AN INFINITZLY

11, Uniform Slide -~ Two-—dimenszional Problenm.
In tiie cage of uniform slide, the 1ift A is

3

equal 1o half the 1ift of the uniforrly movins egunivalent
acrcioil, the resistiance § is agual %o ralf the suction
force of this aerofoil. Thus for exawple, in accordancs

with the aerofoil theory,fer a circular pressure surface

=

with height of cawber f, denth {(profile depth) 2c¢ of
pressure surface { c,f. fig.15) and angie of incidence 3,

of the chord,

)
& x -~ v — ;2 4
w= o op V(L 4 cgl) -~ =1 p V¥ ch;
b 17
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arﬁs} span. The sliding force is alwayrs dirseted towards
the cenire of the rnressire surface.,

For ourposcs o
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forces drawn according i scale for four diffeoren’ pressure

surfaces. T¢ is sssn that for B8, = 3, slide w: sthiout
resisitance is possible,. The above equations hold aiso for
s

negative f, but nct for nefative p,; because Lhen ihe

leading edpe is awash apnd anothsr flow appears,

I1f the siiding
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fluid in motion, it iz seen that (apart from infinitely



seall quantities of higher order), the free surface is
identical with the ..rsam line (path line) which proceeds
fron ihe aeréfoil iﬁ the case of ihis moving zerofoil.

The flow in the case of the plate, calculated

in para. 17 passes into the flow iadicated here for

1%.  nlform Slide. Limiting case of the wide #liding
suriacea :

In the limitirg case concerped, the span b X

{fig. 17) is assumed tc be infinitely larse .n relation to
ireg wspib %c, vapiable over v, of the pressure surface

(p = Ze). 'The “centres of ¢ravity" {fig,16) .0f the

]

sivevlavion 1 sbout the individus! flat profile elements

are sssumed as 1rins, ir plan, oan a strazidht.-line.® X

.
Lo oandie

*ie of lacicderce |, wmey re variable over ihe span.

hAccording to Prandil’s aerofoil theory the

refetyon for U is

T3
¥
-
[}
8
i
]
o
S/l
o~
1A%
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“anere P is vae angle of downwash. (Prandil) .
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} sywbul- are explained in figs. 16 and i7.
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this sxevple 2 denotes the real co~ordinate.
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*®¥hen iz condition is nct mst (e.g. in the case of 2

tewi; large discrepercies may be expected, On the
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ifficulties would arise ifi this

condition is allowed to lapse-
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3.

By varyin%'the height (altitude) of the individual -
profile elements (the run of n,) in the case of the sliding
surface, the form of the pressure surface would likewise
vary, the forward side becoming immersed to a greater or
less distance. ’-The present object (in the sense of
para, 10). is the relation, equation (Z27), between the
variation in height n,- = n,. ( @ of the profile elements
and the variation of the depth 2 ¢ = £ ¢ () of the pressure
surface, ' in equation (Z7) imzdined as being replaced by
2¢ according to eguation (22) ¥ X X

The velocity v, of a particle x, z of the
surface, owiﬂg to the supporting line Ce = Tyg ( ) x
and owing to the susface of vorticity Q,EC d ¥ may be
caleulated dirsctly by Helmholtsz' felationd(%ig.‘17)1

Since the fluid is approaching frem infinity at

d . . .
V = -~ ¢ X , ‘the elevation n ol z particle is
d 1t
% 1 X
n=fv,adt== =Jv,dzx
1= v X=m®

Putting in v, and integrating we deti

The first term corresponds to the supporting line, ‘he
sncond to the surface of vorticity.

In conformity with the limiting case b 27 « ¢,

XXX p o . e T SN
As approximation fP mray be regarded eas negligibleiiy

relation to g.
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. P - . S == 2
let us consider a pogitien ‘or waich b 2 x T e &
For snoll u/v we obitain fron o uaiion (23) by development

o !

. x . . : .
of & series with respect to ~~- and taking inito account

%
rz L2 % ¥
the first teras ( Z-=2 assumed continuous).’ ®
é.Z
— .
. {Pw \'. 1

" ? i;-— - 1] at (b )‘ - .

r \ ’ . L Z - £ o
— ST+ o ZELAI T Rl e 4 xR (24).
4uV L {C - 3z} x? ZrV

‘ i
I is the circulation at the position & = 2z {(ef. fig. 17).

Compared with the flow past the plate of finite
ﬁidth, fhe flow in the region of the profile cross—section
is inclined at an angle BP. (fig. 16). Otherwise howevér,
as may boc shown, in the immediatle vicinity of the profile

(b > x)- the form of the surface is approximately the same

o2

as in the two—dimensionsl problem,. Donsequently, (fig.18).

X By thus putting 2c¢ doubl; small compared witi b, wh.ch

is necessary because of cquations (24; agd (26), it nay

be anticipated that, with finite spans lérﬁer discrepancies
will arise than in the cease of.Prandtl's aerofoil theory.
On the other hand the'assgmption b % x does not appear to
be too restrictive, since even for x 2 + o or ior

x § - 1.8 ¢ the elevations y of the free surfaze for
infinitely wide aerofoils are hardly different ffom
those given by equation (28),

or x = 0 ihe second integral of equation (2?) gives

N = - ~{he term %z 3P may be added without
eV

matbematical proof, since BF beyond x = J is continuous.



% ¥ %

e = N1+ ¥yb = = «~ x B7 (25)-.,;
yi, = = may be determined for the limiting case x ;ﬁ Ze
and for A—=0 from equation (&80).

r/
f o @ 73
Fb = * = e 'l 4+ 1n (28).
anV |
{
A
Th4 d 23 v rdi + o 5 't," H (‘../L\ ST ES t Y t
This and 7 zccording to equatioun (Z4) are put into
. . ¥ ¥
cquation (gB): * ¥ ¥
e Yoo
/...... - 1) z . ’
D b ip / 16z (4 ). |
H H \1 i . “z D - z} i
Ngy = e [ e -~ Rt (273,
1 P oo b ¢ !
4wV !0) iZ 2 [ z
(. B
There is still the resistance to be ceounsidered, Jging
d A Ks 1, 14 O FH > Ld by -
——= to denote ihe lift “"density", ihen, since the force
d =
is inclined at § at every position, the resisiance is
d ' b . d A 'E n . d A 3 { €22
“ldz= [ pp =Sdaz 4 [ o(p-gR) Sl gz 8 .
d z o - d =z o d z
The first componeni, as in the ca2se of ihe zercefoil,
corresponds to the kinetic enerdy of ihe water moving
"downwards" behind the sliding surface, The second is
. i
used for the producticn of the splash water, This

component can be avoidsd by cambering

—— -

the profile.

P

—a e

The last term in the brackets,

b e W Pt i D iy S S

viz * 1, in accordance

with our limiting case is small compared w;th the

first two terms.

It seems right, however, to take

thig term into accouni in 8 numorical salculation,



Let us comsider {(fig.18) the limiting case

=

- . If the bottom (infinitely flat) is keeled and
2 .

if the water in the forward portion of the slidinf surface

reguires a lengih 1 4 in order %o reach the lateral edde

1
of the bottom, then == will also —F =,
4 LY
£g

If an infinitely long plate cof widith Zc moves

in a fluid extending in 211 directious perpendicularly to

its plane at a velocity V,, the behaviour of the surrounding

water may be reduced to thai of a mass of waler carfied

[

, of the quantity rn p c® (per unit lensth of the plate).
Behind the sliding surface ian the lower half-svacs, therse
is produced every secoad on an slement of lendih i, the

velocity field about a plate of widith & ¢ of the step

moving downwards at the velocity V, = V B, The wmomentum
transmitted 1o the water per second:
r-./" [P V X X 2 V - - D (:‘9): .
B/ sek = So= K g Gy el Ba: S z ).

9 .

produces thd sliding force P of the same value.
In the case of the infinitely flat keeled

bottom, over %he element 1., the pressure distribution
- - 2' dﬁ - . s
with V, = V3 and d Vn/d = o~ Y —~— 1is diven by
iz

equation (45)3- behind 1,pressures only appear with variable

d e ;
- p V2 a8 / e? - x% :
dz -

inclination of the bottom: P

M

Tor the production of the energy remaining in the water



¢
1N

behind the botton per metre of path, the work
. 1 1 » 2 .
&7 ;fi(‘;""bel" =, - o = L P Ca" ° (v ba') = T,-,",’: (39)4_
<
z 2

is consumed, which corresponds to a resisianqe Ws of the
sane velue, Ia the case of the bo{tom with: straight
kesl 8 = B, the value of the total resistance ¥ = Pp,,
(cf. equation 22) is just twice that of W,. 2 cuantity
of enerdy of the same value is thus absorbed in the
ash-water, which’is produced in the region 1,, If

the angle B in the region 1, is reauced, this loss of

[¢]
jo
Q
b
0,
&
[N

s reduced in the same measure and eventually
avolded allogether. The distribution of the forces and

the resultunt P are shown far 2 cases in fig. 19,

34, Em?act”of koeeled surfaces,

Llet the iritially flat water surface be considered
as uoving pwards towards the botlom, imagined as &t rest
(£ig.20). Let the velocity V_of the water at infinity be
¢ivsn as z function of the time 1 V = V (%),

In this impact process, ithe velocity at the

free surface in the principel redion is directed vertically

E
3

~

K]

2>). The velocity at the bottom drops in the

41

5

ection of the bottom, The flow (fir. 20) unigquely

given by these boundary conditions is in (infinitely):
-3 * P L t o .

close agrosument with the flow of a fluid extending to
infinity sbout a flet plate 2% rest (ef. para. 6.).

The widih Z¢ of the plaie is the smomentarly width of the
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srfccs, 1 ilccity of the water at ‘a position

s 31
vg o= TTTTGE (31),
¥ ES 172

3}
ths elevation n of the water, celculated from the moment

ot _;:' Va4
n=J vy dt =/ *‘_‘:?ﬁ:_i.‘g;“ru (32) o
o oV 1~ =~

The width 2 ¢ of the pressure surface increases
with tims: ¢ = ¢ (t). Selecting for the moment ¢ as

independent variable, hence ¢ = % (c) and also V =V (e)

d t . L
we may put d t = -— . d ¢, thus (owing to u_ cf. below).:
d ¢ .
X g4 ¢
“ Y " u (o)
: d ¢ ; u (c) dc
R = ! e dc = ! TTmTETTpTT (33).
i c? : S
d 71 - m- » / i
c =0 %2 c =0 %2

At the moment, when the water particle =zt position x
reaches the conteur of the pressurs surface, ¢ has become

= x—and n = nb

X
oy 4t r
; dc u{c) de
R B I Ry (34).
./ c® p c?
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Y tuo cependent varigblee ¥V snd ~—-— hove bDegen coubined
?
& e
in
¥ v 55
v o= o1 ({3).’ Z e T e (C' ).
& V.
dt
E C\l—

guation (84) wnwust hold for all z and is to be taksn as

integral equation for the determination of u (c),

[

{c?, pora, 10)., The infinitely small a is a purely
geonctrical guantityy 1t depends only on np (x) but
act on V= V (%), %trgill always be possible to represent

the ¢given form of botiom by the series,
4 . - ‘ _ ~
nb =8 x + P, x2 + B, x® + By x* + B c® 4 ... (8Ca)s

The soluticn‘df,equaiion (34) is then written

in the form (trial by substitution I)

2 . . 4 . 3 16
a = u(c): = f.' ds + ﬁl c 4 - Ba c? + iba 0a + ~= Bg c* + vos 0
: R 0 2 o

(26b).. " .
if V, is now given, for example, as funciion of

t, ¢ = ¢ (t) may be determined by eguation (35), namely

fronm

? u (e} d ¢ = } v, () d ¢t (37)..:
o o

‘

The form of the waier surface n = Y (x) may be determined

|

from equation (Z8}, when, after

boto

ntedration, ¢ is

-
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sgoriéed s given cnd T oL vesrloslc, For 'sxcaple, for
3 - f
- - Y HE P e er
a2 gtraidht keeled botica we gel.
.
€3
& . ¢C g
n = - B.x arc sin - (38).
4 b

H

To determine the force P on the body, the fluid
is zssumed as being initially a%t rest and the body moving
relatively %o the fluid at tae velocity V = V (1),

The “momentun® of the fluid is
S ‘ .
B = 5 P c? v (33).

By differentiation with respect to %, using equation (35)

we fet

Ve dv
P=ux gc -+ il p c? ~— - (40), -
By 2 dt

For the special case when a:body of given mass
m with initial velocity V, strikes the water, the’
mouentun of the fiuid {(eguation 39) is put as equal to

. the momentum m (Vg ~ V) siven up by the body, and we set

v
Vo= ==t (41).:
14+
n.p o¥ HEPY
wher¢ R TR U A ; (42){

-
£ 2
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Putiing P = -~ » —=—  in%o eguation (48), and
a %
v . Lo 3 kY T 2 ol
usizg scuations (£1) and (42} s cbicin

K op e Vo F .
P = .-.._..z-.....-»....t..- ( 43) ‘ ﬂr
' (14 w3,

2 5z Y,.°
P o= Ll (432).

it may be of interest to detesrmine the forn

[y -

which should bs giveun to the botiom In the cass of a body
of given mass, so that P = P” shall be constanit in time.

In this case we mast put u = u (¢} in accordcnce with

P = P,, bat it aust be borwe in zind thel p scecorcing to

|

¥
=
-
i+
o
=
4
o
£
ot
3
P
=
4
+
-
-+
©
>
S

i 1 .
PR N .- S R : (as),
2P, 1¢C by | (T4 agd 235 uy (34 uy)?
n P ’ o - o s . .
rvhere nyp = ~—=e—— , 4 bottom of this kind is represenied

¥e now calculaie tae pressure distribution-at the
bottom. Tor.ix; < ¢ the vslecity potential is
Lo - L . . . . B
6 = - ¥ e? - %, The fluid pressure p is %
[ 5
Lo ‘
ot ALY
IR R A I O B (&2
- A = 3
AT g -
.:ﬁ' L{:.”be lQC= Cita B, 2:\0 gt e 5

i
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uith o = o (¥, c) zad vy = ——= , we obitain wiih equation
S

o ‘ir:. i o — o
T 2 o da v 1 ve . .
P a AoTEET R X46)-..
Yl = o ¢ % g c'?
o2 — ]
x®

he lzst term, due to the sguare of the velocity, is

infinitely small compared with the first itwe terms which

.

29
are due (0 - (t

is does not hold for the region of
ot

-

the splash root)w
For the case of the impact of a body of given

mass m, we obtain from eguations (41) and (43).:

rﬂ~_t?
i 4 , - x® Gl 4 plk
;a:J meaga - 2{37!{ i ==—: - "“‘(‘*“‘=;"‘":2‘ (46)@
PR - Sl by
L : Z
v c V& /
-

The first tere due to d ¢/d %, gives large
positive pressures at the edge of the pressure surfacs,
whereas the second term gives nedative pressures with
elliptical distribuiion produced as 2 result of the fact
that simuitaneously with thé'body,vthe water is retardéa

in the course of the impact., Since the pressures at the

.centre of the body corresponding to the first term are

relativély small, it is highly probable that, in cases

occurring in praciice there will be negaiive pressure at

<1,

the centre of the bottom, whilst at the edse of the pressure

17}

urface very large positive pressures which, taken in
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siate flew Iory finite engl. &= 3.1 ars compared in fig.
7o owith these factors for the epiash {low, (equatiéns 2
andg 12).
Fig. 23 showsz ihe pressure distribution during‘
the iuvact of z body of 25 = 2 » width, 1100 kg weight

3
o
s
vl
¥
e
0

volocity of dro- V.. = 5 m/see, -

Zne figures, give the impact forces in tons.

5.. Touching of a s¢ep, Two diwensional problem,

s 7 - aas .
&s an exaaple of 2 non-uniform sliding motion,

ilet us congider the touching of a step (fig.24).. The

P . . cee v X .
feoctorg assumed ss given are: the veleocity & *, cousitant
in time, of the stop end the normal veloclity W, = R{R + «);

,

the depth 2¢ (variesble in time) of the pressure surface

coxpared with the path #t itravelled by the step iu the

t

ot

.me t3 the time t in which C = 1 is selected for the -
sake of shoriness, The purpose of the calculaticn,

nzrely, {(in the ssnss of p-ra.10) ibe determination of

b |

8 and wy, is achieved by delerminin

12}

s th

¢y

velocity field

o

and the calculation of the free surface {in particular
of 1u).

It is seen that fluid motion with cenire of

™

similitude (cf. para 18). is produced, the laiter being ihe

v

point of the original surface at which the siep touched

——

# In this exemple the velocity of the body is indicated

by % insiead of by V =zs hilitherto.
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(in fig. 24 the starting poini of the vector W Y. Ou
the poriion of the fres surfeace suept by the slid;ng

edfe % B X ¥ ¢, 3 horizonial velocity vy {c.f., para. 7)
is produced, which, in the case of the equivalenil aerofsil
notioa.corresyoad; to a surface of vorticity with velocity
Jump w = 2 vy.  Since the vaiuve of u at every position

iz inveriable in time (Theorem 5), but owing to the
ginilitade, the %Efcula%ioa sbout the surface of vorticiiy
znd the length éf the latier increase g}th tits, the valuse
a2 = 2 vy of the diséontinuiﬁy on the portion X XL C
m;st also be constant in place,

In order to deterwmine the velocity field it is

necessary first to know the relation between Wiy, and u. %

In‘fig. 25 the co-ordinates of the individual vortex

filawents are denoted by £ and the circulation about %

{ilement by u 4 &.; In the conformzl transformation of the
plaﬁé flow about a cylinder all quantitiies are denoted by

the capital letters, Hawely, * % :

P S —— e Y ot S,

X x + /%% -1 {433, sad =, = & + /gz -1 (48).
The velocity.field is divided into the two

fields I and II,

- W A Wi P o T TeAD o A By e et o Ghe s T i s B

# From the anthor’s paper, loc. cit, equation (8),

eguation (54) is obiained directly with the notation

for u = const. 1he process has been repeatéd here

-in such 2 mal. >r thal the velocities v, at the free
v

- gurface are also obtained (eguation 55).:

%

e

c.f. Wagner, loc. cit., eguetion (4).
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conformal tr

¢l - 4T
B o eemmmon oo smeee———
2a {Z-X) 2r (X -3
-

nce the eirculaticn remains unchanged in the

anzformation d ' = U dl= = u d z

Consequently
. " '\
2. 1 ‘:;“ d &,
. - u I; R Sy s SR
Y = e e . = it
nil™ > , _

he introduce

. d X .
With conformal transformation v = V ~=- .- FEquation {5J):
: ) 4 X d x
is therefore multiplied by d —~ according to eguation
- d x :

(45} and we obtaini. .
- n fx2? ‘ Yo - X7t o | X
Ypi = = - /»-—---—}- 1n Xo + X -—;----—m + 1n} =22

2r \\x - X -1 1 X0 X ~ 1

4% the

Vo= - 1lim
x-u1

-

- A U0 o S gt o D S i i B ST e o VO e

%

c.f. Wagner, loc., cit.

d & .
~:§1accord1ng to eguation (49%): and inte

Y

sliding edge, for X ~—»1 .

2

e 1 (Xo = Xo > 4+ 2 1n Xg)

——— s 2P ettt S e

2 X2 ~ 1

,---._.._..N....i
i

equaticrn (5).

.
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I, e cirsuleticn ~Iree fislid zboutl th

[¢)]

zerofoil moving ot W, with [luid ot rost at infinity.

place of =z,

introduced:.

i

L)
.. <& .
v n ZE = E‘,‘n - e et i o 2 {53).
X2 -1
Total field. In order that, in accordance with condition

parz, 7, at the sliding edge (for X-=»1) v, = vpu1 + Vp11

shall rermzin constant, according to equations (52) and (53):

/.
: 4 nn W,
u=2vy = - AL (84) .
Re = KgTP 4+ 2.1n %,
must hold, ¥e introduce Wy, according to this eguation

into (83) and with (51) form vy = vy + Vu17

/x,.. -1 - X, e
Vg == £ lmi—«~§3~~ + 1n u%w.nJi-s {55)-.
2x \ X 41 X - %,

The elevations n are most sasily dalculated by
equation (75), where in the liniting case s = Xs + X

Thus, for example, in the region of negative x':

3y

A ; =Ry .
n = (g = %) f -e~wé-~—z d = . (56).
...n::’:a"‘x) .

A

Laumb. loc.cit. p. 32.



splash &, %ho origin ©
splash root {xewl) az
resoesy o powers of ¢
vy is cospared with v,
%o sguation {13), when
the splash root‘ v; &

notztion we obtain,

/ \#
x>

ézi‘fﬁz.:-}i

2 \zo + 1

¥

we deterzins the force
#e bave * ¥ X

B ow T w 2

o f 2 C% ¥Fo=on S-n T

Fv 4+ Fa
ey
where.b = 1, vp sin 2

the
esral over all v
B is the

icatea.

- i o

f

symbols &, =,

ince 3¢ B ~ ¥ bt x =
‘les k¥ and B8 arc now

thickness of

the
7 the co-ordinates is placed in the
d v, { eguation 53) developed with
his new uzbscissa. This velocity
I
Dd vy .
S for real z > O according
l dz
(fig. 24) for the velocity v, of
v L3 . -~ a
S5 T o= Yio Using the riier
7 k]
P P .

AN
% + B

1 ST OB D SR S s SA7 am

§ - ¥
a:

! 1n
i o
342zl Zor
X b Pt /
Ao = Lo T/
\ ]

(2 ®)

e

s i

in the eguivaleaj asrofoil. ~

?
x_ ! 1 . B. _
FOIE -z ludg= - (s8).
kS \ et o
= ¥4, D=aud £ and insiead of
have been introduceds.- In additio

ortex. filamente u d £ has boen

“womentuvz® of the fluid., .

e AR 4 L e e S e i a0 Dl

¥ % L. s \

= % aﬁnu,, ioc. ci%, ecuation {24}, :
oy . .3 ~ ey :
“ % % pagner loc.cit. equetions (28) (28) (51,
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. JR IS . . AN e . .

(2 ™) = 2. o Sincs ! c.f. para. 16) boik the vote
Do

» ené the surfaces insrcase linezrly with time, B'is

DB 2B
o~ ot 5 B hence - = = Aecordive 4
propertiional to 17, hence ~—w — lccoruing o
. o1 Y

fig. 24 we

may put )
o e
e o PO
[ e v
i
By integration of eguation (58) we finally cbiain the
sliding force.

(i X%.)

v

~s¥
Xa™%)

The author has mazde the calculation for

25 ¢.. The result obta

Sé}-vﬁ\= 0 - 813 ﬁnjfurﬁhﬁr after calculatiar ., T3
equation (68), 8 = 1 + 25 %3 the surface for § = 0 21
is shown in fig. 26, In ihe region about x = I,
owing to discontinuity {inclination of the zurface poo
iafinitely small) the celcuiution doss nc?t Lold i
this region however, iheorem 3 and eguaticns {84} =wa (835}
even without calculaticn, provide a dood hasis for woding
the drawing of the surfacs. The vilocity F7oin indicaisd
at various positions of ths surface,
IV,  YARIQUS LIZITING CASES.
16, Fluid motion with centre of similituds,

The assumption of iaf

ths surface is dropped in thi

the siraighi-kesled botton imm

ihe

w

&)

{conztion



velocisy Vo, constznt In fipe, this fluid moition, &5 nay

be readiiy scen, is sublecied o the genersl lar of
he form f the surfuce at the diffors
a8 Srg 01 NS Surials at VneE Sliicront

W

ines are gecumetrically similar and the same velocitiss

If the fluid is dmagined as movind jowards ihs

of ihe fres surfece ars dencied by their sbscissas £ 2t the

time ¢ = 0. Their position at a subscquent tims © is
- / v
P PR . ; e 3

g£iven by %the radius vector #° = & (&, %) relative to 0.

o

PN . ’ . wa N T O’ ; . B .
The velocity iz W) = #/ (B, 1) = =2 . The interpretaiion
: ;
. v

of fig. £27 according to the law of similitude isg:

I t tb

iy
£

gt
(<]
o
[
14
[¢)
.
Al
'
ey
@
5._v
;:

id particle % is in the

position ¥ -and has the velocity ¥/, then at the time 2 %
{(with » < 1) the fluid particle n & was in positivs n

{
and had the velocity VI o Expressed as 2 wathematicel

formula

Lol B4
»
3
£

} V]

§ A
i
wt
D
Al
-
D

P

o | &%

e §r
i

ot ! S
T

Sy sartisl diffemen iation of these two eguations with

regspect to )

N s i E . ) ak; & -
.2.7 e ..i“x E- :..,:,...; " ¢ 8n }‘ .and ?«i‘l’ Sl - { (51)
% 1 ® d & “ 3 % F E T
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<7 of sLuloivuce tas Llendin of b

N S Lme = . . $ b4
spioch, parallel o the tendent to the sur oo @

T ey de 3 Loy = % ST T2 42 X 1 3 ',75 )
HGRELIoN 04y, Loy nultiplication by i# 4 and 4/ Bay

Vet o= T (66 and vyt = 7HhI - s {67).

Foot otes I%{ should be msatiocaed, that the boundary
% dv
ol Yhe region of the suxiliary cueantity h = § - d g
=
corresponding to the fluid spzce is rectilinear, " The

the direction of the surface, so that with v = vy -

B

Va

-

the preduect 4 v 4 z &t she free surface is in the

direciion of the imaginery axzis.. Hence along the free

3

s 3 s 3 (‘V »

be directicn of VM d v d z = - d z is + -
- 4

the real-axis
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£iz.22Y), In deriving a second couplex relation independesnt

O

iy
Lo
3

. ¢ne above, Lthere is & temptation to neke use of ihe

P d s - .
L) mwmceeesese-  al ths frse surfece

w2

a“VX"lVy
o Bub vince ¢his conteins the quantity conjugaie
with v, the author hoeo Leen unsble to find a ¢onclusive

clution for the vwhols probl

ohd
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‘5,‘1

Ead 2
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agse of W 4 and to the constant
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5
e
¥

Ouing %o the linear iacre
icpact velocisy Vo of the b
ihe bedy 1 B = - 3 1’;‘5 -
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io woy be ss
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72y,

en, the inlegrel over the infinitely distant
rfece P o bec@mesAiufinitely‘smal}y and may be

At the surfacé of the body Fy, owing to the

geonstrical boundary condition,:d f = ¥, 4 f, Therefors

-
a
-

.

¥ ‘edner, loc. cit. para.
% & Lerb, loc. eit.: p. 5l.
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VEHICLE RESEARCH CORPORATION

161 EasT CALIFORNIA BOULEVARD

PASADENA, CALIFORNIA

SYCAMORE 5-0491 27 January 1967

Library
National Aeronautics and Space Administration
Washington, D. C.

Gentlemen:

We would like to obtain a copy of the English translation of the
following paper: Herbert Wagner ""Uber Stoss - Gleitvorgange an der
Oberflache von Flussigkeiten'' published in No. 4, Vol. 12, August 1932
of "' Zeitschrift Fur Angewandte Mathematik Und Mechanik, page 193-215.

A well-worn semi-legible copy of such a translation is available in
the Caltech library, containing the stamp of NACA library, Langley
Laboratory, and containing a number N-23507, with a note "translated
in 1936, ' and with the title

"Phenomena Associated with Impacts and Sliding
on Liquid Surfaces"

Your cooperation is appreciated.
Sincerely yours,

VEHICLE RESEARCH CORPORATION

e -
S AN C

Scott Rethorst
President

SR:mp



